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The basic goal we have is to understand linear operators T : V → V of a finite-dimensional vector space

V . We assume that our vector space is over the field C. We begin by reviewing ideas that we’ve considered

before in specific examples, and then proceed to the theory of generalized eigenspaces.

1 Review

We present some results that we have seen before.

Theorem 1. Every linear operator of a finite-dimensional vector sapce T : V → V has an eigenvalue.

Proof. Suppose that dimV = n <∞ and T ∈ L(V, V ). Take any 0 6= v ∈ V . The set

{
v, Tv, T 2v, . . . , Tn−1v, Tnv

}
is linearly dependent because its cardinality is n+ 1 and dimV = n. Hence, there exist coefficients αi, not

all of which are zero, such that

αnT
nv + αn−1T

n−1v + · · ·+ α2T
2v, α1Tv,+α0v = 0

and therefore Tv vanishes on the polynomial

p(z) = αnz
n + αn−1z

n−1 + · · ·+ α2z
2 + α1z + α0

Since the field of complex numbers is algebraically closed, p(z) splits into linear factors up to a nonzero

constant

p(z) = α(z − λ1)(z − λ2) · · · (z − λm).

We now have that

c(T − λ1I)(T − λ2I) · · · (T − λmI)v = 0.

This gives us that T − λjI is not injective for some j. That is, T has an eigenvalue.

Proposition 1. Nonzero eigenvectors corresponding to distinct eigenvalues of T are linearly independent.

Proof. Suppose that v1, . . . , vm are eigenvectors of an operator T corresponding to distinct eigenvalues

λ1, . . . , λm. If v1, . . . , vm are linearly dependent there exist α1, . . . , αm ∈ C, not all of which are zero,

such that

w = α1v1 + · · ·+ αmvm
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is the zero vector.

This gives us that

0 = α1Tv1 + · · ·+ αmTvm

= α1λ1v1 + · · ·+ αmλmvm

The operator S =
∏
i 6=j

(T − λiI)w = αjvj = 0 which yields αj = 0 for all j.

The following example reminds us of the ideal situation where the eigenvectors of the matrix span the

vector space.

Example 1. Consider the operator on C3 given by the matrix

A =


1 0 0

0 0 −2

0 1 3

 .

We first wish to produce the eigenvalues for A. We note that if (A− λI) is not injective, then


1− λ 0 0

0 −λ −2

0 1 3− λ



v1

v2

v3

 =


(1− λ)v1

−λv2 − 2v3

v2 + (3− λ)v3

 =


0

0

0


which gives us the system

(1− λ)v1 = 0

−λv2 − 2v3 = 0

v2 + (3− λ)v3 = 0

The first is satisfied by λ = 1 or v1 = 0. The second and third is satisfied when v2 = v3 = 0. Let’s see if

we can get some mileage from these observations. We discuss them below:

λ = 1: 
0 0 0

0 −1 −2

0 1 2



v1

v2

v3

 =


0

−v2 − v3

v2 + 2v3

 =


0

0

0



Linear Algebra 2



Axler’s Paper

which gives us the system:

−v2 − 2v3 = 0

v2 + 2v3 = 0

This implies that v2 = v3 = 0. Hence, Eλ=1 is spanned by (1, 0, 0)T and (0,−2, 1)T .

v1 = 0: 
1− λ 0 0

0 −λ −2

0 1 3− λ




0

v2

v3

 =


0

−λv2 − 2v3

v2 + (3− λ)v3

 =


0

0

0


yields the system

−λv2 = 2v3

v2 = (λ− 3)v3

Solving for λ, one obtains either λ = 1 or λ = 2.

λ = 2: 
−1 0 0

0 −2 −2

0 1 1



v1

v2

v3

 =


−v1

−2v2 − 2v3

v2 + v3

 =


0

0

0


which gives the system

−v1 = 0

−2v2 − 2v3 = 0

v2 + v3 = 0

with solution v1 = 0, v2 = −v3. Hence Eλ=2 is spanned by (0, 1,−1)T .

We have the eigenvalues λ = 1 and λ = 2. We also see that the eigenvectors span C3.
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The eigenspaces are

Eλ=1 =

〈
1

0

0

 ,


0

−2

1


〉

Eλ=2 =

〈
0

−1

1


〉
.

It isn’t difficult to show that these three vectors span C3. In fact,

C3 = Eλ=1 ⊕ Eλ=2.
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2 Geralized Eigenvectors

Consider the operator on C2 given by the matrix

M =

1 1

0 1


If M has an eigenvector v, then there exists λ such that v ∈ Ker(M − λI). Writing (v1, v2)T ,

1− λ 1

0 1− λ

v1
v2

 =

(1− λ)v1 + v2

(1− λ)v2

 =

0

0


which yields the system

(1− λ)v1 + v2 = 0

(1− λ)v2 = 0

This reduces to λ = 1 or v2 = 0. Each case is analyzed below:

λ = 1: 0 1

0 0

v1
v2

 =

v2
0


which implies that v2 = 0.

v2 = 0: 0 1

0 0

v1
0

 =

1− λ 1

0 1− λ

v1
0

 =

(1− λ)v1

0


which implies that λ = 1.

Hence, the eigenspace Eλ=1 is 1-dimensional and spanned by (1, 0)T . Our analysis shows that the

eigenvectors do not span V . Such a matrix is said to be defective. We wish to find a basis for V related to

M − I. We note the operator (M − I)2 is the zero operator.

We have (1, 0)T ∈ Ker(M − I). Can we get a vector from Ker(M − I)2 to obtain a basis for V ? Well,

Ker(M − I)2 = V , so we can take (0, 1)T .

Definition 1. Let λ be an eigenvalue for the operator T : V → V . A vector v ∈ Ker(T − λI)k, for some

k ∈ N, is said to be a generalized eigenvector.

In our example above, (1, 0)T and (0, 1)T form the generalized eigenspace for λ = 1, and the generalized

eigenspace is C2.
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Example 2. Consider the operator on C3 given by the matrix

B =


1 1 1

0 2 2

0 0 2

 .

We first with to produce the eigenvalues for B, which occur when the (B − λI) is not injective:


1− λ 1 1

0 2− λ 2

0 0 2− λ



v1

v2

v3

 =


0

0

0


which yields the system:

(1− λ)v1 + v2 + v3 = 0

(2− λ)v2 + 2v3 = 0

(2− λ)v3 = 0

Notice that this system is satisfied when λ = 1 and v2 = v3 = 0. Another solution is given by λ = 2 and

v3 = 0. Here’s the discussion of these two situations:

λ = 1: 
0 1 1

0 1 2

0 0 1



v1

v2

v3

 =


v2 + v3

v2 + 2v3

v3

 =


0

0

0


which gives us that 0 = v2 = v3 and v1 is independent. So, the eigenspace Eλ=1 is spanned by (1, 0, 0)T .

λ = 2: 
−1 1 1

0 0 2

0 0 0



v1

v2

v3

 =


−v1 + v2 + v3

2v3

0

 =


0

0

0


We see that v3 = 0 and v1 = v2. So the eigenspace Eλ=2 is spanned by (1, 1, 0)T . Here we have the situation

where the direct sum of the eigenspaces is a proper subspace of C3.

Linear Algebra 6



Axler’s Paper

Now, we wish to take a look at Ker(B − 2I)3:


−1 1 1

0 0 2

0 0 0

 =


−1 1 −1

0 0 0

0 0 0


which has null space spanned by

(1, 1, 0)T and (0, 1,−1)T .

The generalized eigenspaces are

Uλ=1 =

〈
1

0

0


〉

and

Uλ=2 =

〈
1

1

0

 ,


0

1

−1


〉
.

One can check that

C3 = Uλ=1 ⊕ Uλ=2

This example demonstrates three ideas that come out in the general theory:

• The generalized eigenvectors of T associated to the eigenvalue λ = 2 equals Ker(T − 2I)3.

• Generalized eigenvectors associated to distinct eigenvalues of T are linearly independent.

• The generalized eigenvectors of T span V .
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3 The Theory of Generalized Eigenspaces

Lemma 1. The set of generalized eigenvectors of T corresponding to an eigenvalue λ equals Ker(T − λI)n,

where n is the dimension of V .

Proof. Every element of Ker(T − λI)n is a generalized eigenvector by definition.

Suppose that v ∈ Ker(T −λI)k for some k < n the least natural number that gets the job done. Consider

the set {
v, (T − λI)v, (T − λI)2v, . . . , (T − λI)k−1v

}
.

If αi ∈ C, 1 ≤ i ≤ k − 1, not all zero, such that 0 =
k−1∑
m=0

αi(T − λI)mv. Then

0 = (T − λI)k−1

(
k−1∑
m=0

(T − λI)m

)

=

k−1∑
m=0

αi(T − λI)k+m−1

= a0(T − λI)k−1v

which implies that a0 = 0.

Applying (T − λI)k−2 in this manner we get α1 = 0. Carrying on, we see that αi = 0 for 0 ≤ i ≤ k − 1.

The statement follows.

Proposition 2. Nonzero generalized eigenvectors corresponding to distinct eigenvalues are linearly indepen-

dent.

Proof. Suppose that v1, . . . , vm are nonzero generalized eigenvectors of T corresponding to distinct eigenval-

ues λ1, . . . , λm. If the vi are linearly dependent there exist α1, . . . , αm ∈ C, not all of which are zero, such

that w = α1v1 + α2v2 + · · ·+ αmvm is the zero vector.

Let k ∈ N be the smallest such that (T − λI)kv1 = 0. Apply the linear operator

(T − λ1I)k−1(T − λ2I)dimV · · · (T − λmI)dimV

to get

0 = α1(T − λ1)k−1(T − λ2I)dimV · · · (T − λmI)dimV v1.

Rewriting the operator

(T − λ2I)dimV · · · (T − λmI)dimV
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as

((T − λ1I) + (λ1 − λ2)I)dimV · · · ((T − λ1I) + (λ1 − λm)I)dimV

we can expand each factor via the binomial theorem to observe that each term contains some power of

(T − λ1I) except for the term

(λ1 − λ2)dimV · · · (λ1 − λm)dimV I.

Applying (T − λ1I)k−1 on the left and v1 to the right gives us zero and the relation

α1(λ1 − λ2)dimV · · · (λ1 − λm)dimV (T − λ1I)k−1v1 = 0.

This gives us that α1 = 0 due to our choice of k. One can get that αj = 0 for 1 ≤ j ≤ m in a similar

fashion.

Theorem 2. The generalized eigenvectors of T span V .

Proof. The proof will proceed by induction on the dimension of V . The result holds for dimV = 1 because

every operator V → V has an eigenvalue. Hence, the associated eigenvector will span the space.

Suppose that dimV > 1 and that the result holds for vector spaces of smaller dimension. Let λ be an

eigenvalue of T .

Claim: V = Ker(T − λI)dimV ⊕ Im (T − λI)dimV .

Suppose V is in the intersetion of the two summands. Then (T − λI)dimV = 0 and there exists w ∈ V

such that (T − λI)dimV w = v. This gives us that

(T − λI)2 dimV w = (T − λI)v = 0.

That is w is a generalized eigenvector of T . Since the geralized eigenvectors all lie in Ker(T − λI)dimV ,

we have that

(T − λI)dimV w = 0

which is impossible since we took v to be nonzero and the image of w. We conclude that the intersection

is trivial. The dimensions of the direct summands add up properly as a consequence of the rank-nullity

theorem. We’ve proven the claim.

Because (T − λI)dimV is not injective by assumption, Ker(T − λI)dimV is nontrivial. Further, Im (T −

λI)dimV has dimension strictly less than dimV . Applying the inductive hypothesis, we have that Im (T −

λI)dimV is spaned by the generalized eigenvectors of T restricted to Im (T − λI)dimV .

We end this section with a theorem describing a decomposition of V into generalized eigenspaces. This
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will be important in obtaining the Jordan form of a matrix.

Theorem 3. Let λ1, . . . , λm be the distinct eigenvalues of an operator T , with Uλ1
, . . . , Uλm

the corresponding

generalized eigenspaces. Then

(a) V = Uλ1
⊕ Uλ2

⊕ · · · ⊕ Uλm

(b) Each Uλj
is T -invariant.

(c) Each (T − λjI)dimV restricted to Uj is nilpotent.

(d) For each j, T restricted to Uj has only one eigenvalue, namely λj.

Proof. (a) We now that the generalized eigenvectors of T span V . Further, the sum is direct because the

generalized eigenvectors associated to distinct eigenvalues are independent.

(b) Suppose that v ∈ Uλj . Then there exists some k ∈ N such that (T − λjI)kv = 0. We need to show

that Tv ∈ Uλj
. This follows from

(T − λjI)kTv = T (T − λjI)kv = 0

and therefore Tv ∈ Ker(T − λj)k, which implies that Tv ∈ Uλj
.

(c) We’ve seen that

Ker(T − λjI)dimV = Uλj
.

This gives us that (T − λjI)dimV is the zero operator on Uλj . The statement follows.

(d) Suppose that λ 6= λj is some eigenvalue of T restricted to Uλj
. Then v ∈ Uλj

gives

(T − λjI)v = Tv − λjv

= λv − λjv

= (λ− λj)v

and we see that

0 = (T − λjI)kv = (λ− λj)kv.

We now have that λ = λj since v 6= 0.
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