
Jordan Normal Form

Theorem 1 (Primary Decomposition Thm.). Let T : V → V be a linear operator on a finite-dimensional

vector space over F. Let

mT (z) = p1(z)e1p2(z)e2 · · · pm(z)em

be the unique factorization of the minimal polynomial of T into a product of distinct monic prime powers.

Then

1. V = U1 ⊕ U2 ⊕ · · · ⊕ Um, where Uj = Ker pj(T )ej for 1 ≤ j ≤ m.

2. The projection of Ej of V on Uj along the sum of the other Ui’s is of the form qj(T ) for some polynomial

qj(z).

3. Each of the Uj are T -invariant.

4. Any linear operator V → V that commutes with T carries each Uj to itself.

5. Any T -invariant subspace W of V can be written as the direct sum

W = (W ∩ U1)⊕ (W ∩ U2)⊕ · · · ⊕ (W ∩ Um).

6. The minimal polynomial of T restricted to Uj is pj(z)
ej .

Proof.

(1) & (2) Define sj(z) = mT (z)
pj(z)

ej , for 1 ≤ j ≤ m. The ideal in F[z] generated by s1(z), s2(z), . . . sm(z)

has a single generator d(z) because F[z] is a PID. By construction of the sj , no pj divides d(z). In fact, if

d(z) is irreducible then it divides some pj , but the pj are prime. We conclude that d(z) is a unit. Hence,

there exist polynomials t1(z), t2(z), . . . , tm(z) such that

1 = s1(z)t1(z) + s2(z)t2(z) + · · ·+ sm(z)tm(z).

Define Ej := sj(T )tj(T ). Then

I = E1 + E2 + · · ·+ Em

and

EiEj = si(z)ti(z)sj(z)tj(z)

= mT (z)g(z)

for some polynomial g(z). We now have that EiEj(T ) = mT (T )g(T ) = 0. This is enough to insure that the

Ei are all projections. If ImEj = Uj , then V = U1 ⊕ U2 ⊕ · · · ⊕ Um.
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We need to show that the Uj are as defined in the theorem. That is, we need to show that

ImEj = Ker pj(T )ej .

By construction of the sj(z), we can write the minimal polynomial

mT (z) = sj(z)pj(z)
ej .

Hence,

pj(T )ejEj = tj(T )sj(T )pj(T )ej

= tj(T )mT (T )

= 0.

Suppose that w ∈ ImEj . Then

pj(T )ejw = pj(T )ejEjv = 0

for some v ∈ V . Hence, ImEj ⊆ Ker pj(T )ej .

For the reverse inclusion, suppose that v ∈ Ker pj(T )ej . For i 6= j,

S(z) = si(z)ti(z) =

 ∏
r 6=i,j

pr(z)
er

 ti(z)pj(z)
ej .

The operator S(T ) is the projection Ei. We observe that Eiv = 0 for all i 6= j. We now have that v = Ejv

and conclude that Ker pj(T ) ⊆ ImEj .

We’ve proven statements (1) and (2). We now show that these two statements imply the others.

(3) The Ej are all polynomial in T , as we saw in the discussion above. Hence, the Ej commute with T .

Then EjT (Uj) = TEj(Uj) = T (Uj), but EjT (Uj) ⊆ Uj so T (Uj) ⊆ Uj , and therefore the Uj are T -invariant.

(4) Suppose that S : V → V is a linear operator which commutes with T . Since each Ej is polynomial

in T , each Ej commutes with S. By the same argument given in (3), the Uj are S-invariant.

(5) We first observe that

(W ∩ U1)⊕ (W ∩ U2)⊕ · · · ⊕ (W ∩ Um)

is certainly contained in W . Suppose w ∈ W . By assuption, W is T -invariant so Tw ∈ W and Ejw ∈ W

because Ej is polynomial in T . We then write

w = E1w + E2w + · · ·+ Emw
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and because each Ejw ∈ Uj we conclude that Ejw ∈ Uj ∩W , for 1 ≤ j ≤ m.

(6) Let mj(z) be the minimal polynomial of T restricted to Uj . Define Tj to be T restricted to Uj . Since

pj(T )ejEj = 0 on Uj , we have that pj(T )ej is the zero operator on Uj . This implies that mj(z) is some

power of pj(z). Consider the fact that,

0 = mj(Tj)Ej = mj(Tj)sj(Tj)rj(Tj)

on Uj . The operator mj(T )Ej on Ui = ImEi when i 6= j is zero on Ui for all i 6= j because EjEi = 0. We

conclude that mj(T )Ej is identically zero on V . This gives us that mT (z) divides

mj(z)sj(z)tj(z) = mj(z)

1−
∑
i6=j

si(z)ti(z)


and therefore pj(z)

ej divides the right-hand-side. The irreducibility of pj implies that p
ej
j divides mj . We

conclude that mj(z) = pj(z)
ej .

1 Cyclic Operators

Consider the operator on C3 given by the matrix

A =


1 1 0

0 1 0

0 0 2

 .

One can check that the eigenvalues of this matrix are λ = 1 and λ = 2. By direct computation, it can

be seen that (A− I)(A− 2I) is not the zero matrix. Hence, the characteristic polynomial and the minimal

polynomial correspond. We then get the decomposition

VA ∼=
F[z]

〈(x− 1)2〉
⊕ F[z]

〈x− 2〉

which is a cyclic F[z]-module.

Linear Algebra 3



Jordan Normal Form

2 Examples

Example 1. Consider the matrix

M =


1 1 1 1

0 1 0 −1

0 0 1 1

0 0 0 1


We need to find the eigenvalues of M . That is, we need to find λ such that (M − λI) is not injective.


1− λ 1 1 1

0 1− λ 0 −1

0 0 1− λ 1

0 0 0 1− λ




v1

v2

v3

v4

 =


(1− λ)v1 + v2 + v3 + v4

(1− λ)v2 − v4

(1− λ)v3 + v4

(1− λ)v4

 = 0.

The last is satisfied when λ = 1 or v4 = 0.

λ = 1: 
0 1 1 1

0 0 0 −1

0 0 0 1

0 0 0 0




v1

v2

v3

v4

 =


v2 + v3 + v4

−v4

v4

0


which readily gives us that v4 = 0, v2 = −v3, and v1 is free. The eigenspace Eλ=1 is spanned by (1, 1,−1, 0)T

and (0, 1,−1, 0)T . We can directly compute that (M − I)2 is the zero operator. We ahve two possibilities

for the Jordan form of M : 
1 1

1

1 1

1


or


1 1

1

1



Computing the kernels of M − I and (M − I)2:

dim Ker(M − I) = 2

dim Ker(M − I)2 = 4

which gives us that
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# of Jordan Blocks that are 1× 1 or larger

dim Ker(M − I) = 2

# of Jordan Blocs that are 2× 2 or larger

dim Ker(M − I)2 − dim Ker(M − I) = 4− 2 = 2.

Hence, there are two 2× 2 Jordan blocks, and we want the first of our possibilities above.

Example 2. Consider the matrix

C =


−1 0 0

−1 1 0

0 0 1


We need to find the eigenvalues of C

0 = (C − λI)v =


1− λ 0 0

−1 1− λ 0

0 0 1− λ



v1

v2

v3

 =


(1− λ)v1

−v1 + (1− λ)v2

(1− λ)v3


which is satisfied when λ = 1 and v1 = 0.

λ = 1: 
0 0 0

−1 0 0

0 0 0



v1

v2

v3

 =


0

−v1

0


which implies that v1 = 0 and the eigenspace Eλ=1 is spanned by (0, 1, 0)T and (0, 0, 1)T .

Note that (C − I)2 is the zero operator. We have the following for the size of the Jordan blocks.

# of Jordan blocks that are 1× 1 or larger:

dim Ker(C − I) = 2

# of Jordan blocks which are 2× 2 or larger:

dim Ker(C − I)2 − dim Ker(C − I) = 3− 2 = 1
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Hence, C is similar to the matrix 
1 1

1

1


3 V as an F[z]-module

We’ve been studying linear operators of a finite-dimensional vector space V into itself. We constructed the

companion matrix while viewing V as an F[z]-module. Our setup was as follows:

• F is an algebraically closed field.

• F[z] is the ring of polynomials in a single indeterminate, with coefficients in F.

• T : V → V is an linear operator of V that we want to understand.

Theorem 2 (Elementary Divisor Decomposition). Viewing V as an F[z]-module with respect to the linear

operator T , VT is the direct sum of a finite number of cyclic modules

VT ∼=
F[z]

pe11
⊕ F[z]

pe22
⊕ F[z]

pemm

where the p
ej
j are positive powers of primes in F[z], which are not necessarily distinct.

Since F is algebraically closed, we can assume that each of the pj take the form (z−λj), for some λj ∈ F.

The product of the pj is the characteristic polynomial. One could then relax the condition that the field F

is algebraically closed to F containing all of the eigenvalues of T .

Not every matrix is diagonalizable. The motivation for obtaining the Jordan form is to obtain a matrix,

similar to the one we’re studying, that is as close to diagonal as possible. The linear operator T acting on

V is equivalent to z action on the F[z]-module VT .

From the elementary divisor form of the decomposition theorem, we need a particularly nice basis for

each of the cyclic powers F[z]/p
ej
j . For our situation, we are trying to understand F[z]/(z − λ)k. We know

that the standard basis for this vector space is

{1, z̄, z̄2, . . . , z̄k−1}.
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Note that we can write z = λ+ (z − λ). The action of z gives us the following mapping:

(z̄ − λ)k−1 7−→ λ(z̄ − λ)k−1

(z̄ − λ)k−2 7−→ λ(z̄ − λ)k−2 + (z̄ − λ)k−1

...

(z̄ − λ)2 7−→ λ(z̄ − λ)2 + (z̄ − λ)3

(z̄ − λ) 7−→ λ(z̄ − λ) + (z̄ − λ)2

1 7−→ λ+ (z̄ − λ)

We now have the matrix

Jλ,k =



λ 1

λ 1

λ 1

. . .
. . .

λ 1

λ


which is an elementary Jordan block of size k with eigenvalue λ.

Going back to an arbitrary operator T , with characteristic polynomial cT (z), we can decompose V as an

F[z]-module

VT ∼=

where cT (z) = (z − λ1)e1(z − λ2)e2 · · · (z − λm)em . We repeat, for emphasis, that the λj are not necessarily

distinct. We can represent T as a block matrix of elementary Jordan blocks



Jk1,λ1

Jk2,λ2

. . .

Jkm,λm


This matrix is uniquely determined up to permutation of the Jordan blocks.
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