Jordan Normal Form

Theorem 1 (Primary Decomposition Thm.). Let T : V. — V be a linear operator on a finite-dimensional

vector space over F. Let

mr(z) = p1(2)p2(2)? - pm(2)™

be the unique factorization of the minimal polynomial of T into a product of distinct monic prime powers.

Then
1. V=U,eUs®-- & U, where U; = Kerp;(T)% for1<j<m.
2. The projection of E; of V on U; along the sum of the other U;’s is of the form q;(T') for some polynomial
4;(2)-
3. Each of the U; are T-invariant.

4. Any linear operator V.— V that commutes with T' carries each U; to itself.

5. Any T-invariant subspace W of V' can be written as the direct sum

W=WnU)eWnUs)@---&(WnUy).

6. The minimal polynomial of T restricted to U; is pj(z)% .

Proof.

(1) & (2) Define s;(z) = gégig, for 1 < j < m. The ideal in F[z] generated by s1(z), s2(2), ... 8m(2)
J

has a single generator d(z) because F[z] is a PID. By construction of the s;, no p; divides d(z). In fact, if

d(z) is irreducible then it divides some p;, but the p; are prime. We conclude that d(z) is a unit. Hence,

there exist polynomials ¢1(z),t2(2), ..., tm(2) such that
1 =s1(2)t1(2) + s2(2)ta(2) + - - + s (2)tim(2).

Define E; := s;(T)t;(T). Then
I'=Ei+Ey+--+Ey

and

for some polynomial g(z). We now have that E,E;(T") = mp(T)g(T) = 0. This is enough to insure that the
E; are all projections. If ImFE; =Uj, then V=U, @U@ --- @ Up,.
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We need to show that the U; are as defined in the theorem. That is, we need to show that
ImE; = Kerp,;(T)%.
By construction of the s;(z), we can write the minimal polynomial

my(z) = 5;(2)p;(2)7.
Hence,

pi(1)“ E; =t;(T)s;(T)p;(T)*

Suppose that w € Im E;. Then
pi(T)%w =p;(T)E;jv=0

for some v € V. Hence, ImE; C Kerp;(T)%.

For the reverse inclusion, suppose that v € Kerp;(T)%. For i # j,

S(z) = si(2)ti(2) = H pr(2)° | ti(2)p;(2).
ri,j

The operator S(T') is the projection E;. We observe that E;v = 0 for all ¢ # j. We now have that v = Ej;v
and conclude that Kerp;(T') C Im E;.

We’ve proven statements (1) and (2). We now show that these two statements imply the others.

(3) The Ej are all polynomial in T', as we saw in the discussion above. Hence, the E; commute with 7.
Then E;T(U;) = TE;(U;) =T (Uj), but E;T(U;) CU; so T(U;) C Uy, and therefore the U; are T-invariant.

(4) Suppose that S : V — V is a linear operator which commutes with 7. Since each E; is polynomial
in T, each E; commutes with S. By the same argument given in (3), the U; are S-invariant.

(5) We first observe that

WnUy)eWnUz)®---&(WnUpy)

is certainly contained in W. Suppose w € W. By assuption, W is T-invariant so Tw € W and Ew € W

because E; is polynomial in T'. We then write

w=Fw+ Ew+ -+ E,w
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and because each F;w € U; we conclude that Ejw € U;NW, for 1 < j < m.
(6) Let m;(z) be the minimal polynomial of T restricted to U;. Define T} to be T restricted to U;. Since
p;(T)%E; = 0 on Uj, we have that p;(T)% is the zero operator on U;. This implies that m;(z) is some

power of p;(z). Consider the fact that,
0= m;(T;) Ej = m;(T5)s;(T;)r;(T;)

on U;. The operator m;(T)E; on U; = Im E; when i # j is zero on U; for all ¢ # j because E;E; = 0. We

conclude that m;(T)E; is identically zero on V. This gives us that mp(z) divides

m;(2)s; ()t (2) = mi(2) [ 1= si(2)ti(2)

ij
and therefore p;(2)% divides the right-hand-side. The irreducibility of p; implies that p;j divides m;. We
conclude that m;(z) = p;(2)%. O
1 Cyclic Operators

Consider the operator on C? given by the matrix

11 0
A=1|0 1 0
00 2

One can check that the eigenvalues of this matrix are A = 1 and A = 2. By direct computation, it can
be seen that (A — I)(A — 21I) is not the zero matrix. Hence, the characteristic polynomial and the minimal

polynomial correspond. We then get the decomposition

which is a cyclic F[z]-module.
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2 Examples
Example 1. Consider the matrix
1 1 1 1
01 0 -1
M =
0 0 1 1
0 00 1

We need to find the eigenvalues of M. That is, we need to find A such that (M — AI) is not injective.

1—X 1 1 1 1 (I =XNvy +v2 4+ vz + vy
0 1-A 0 -1 v2 | (1 =X — vy 0
0 0 1-A 1 v | (1= A)vs + v o
0 0 0 1-X/ \uy (1=XNvy
The last is satisfied when A =1 or vy = 0.
A=1:
0 1 1 1 V1 U2 + U3 + Vs
0 0 0 -1 U2 —U4
0 00 1 U3 - Vg
000 O Uy 0
which readily gives us that v4 = 0, vo = —v3, and vy is free. The eigenspace Ex—; is spanned by (1,1, —1,0)T

and (0,1,—1,0)7. We can directly compute that (M — I)? is the zero operator. We ahve two possibilities
for the Jordan form of M:

or 1

1 1

1

Computing the kernels of M — I and (M — I):

dimKer(M —I) =2

dim Ker(M — 1) =4

which gives us that
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# of Jordan Blocks that are 1 x 1 or larger
dimKer(M —I) =2
# of Jordan Blocs that are 2 x 2 or larger
dimKer(M — I)?> —dimKer(M —I) =4 —2 = 2.

Hence, there are two 2 x 2 Jordan blocks, and we want the first of our possibilities above.

Example 2. Consider the matrix

-1 0 0
C=|-110
0 0 1
We need to find the eigenvalues of C
1—A 0 0 V1 (1 — )\)Ul
0=(C—-M)v=] -1 1-X 0 v | = | —v1 + (1= N)ve
0 0 1—A U3 (1 - )\)’Ug
which is satisfied when A = 1 and v; = 0.
A=1:
0 00 V1 0
-1 0 0 v | = | —u1
0 0 0 U3 0

which implies that v; = 0 and the eigenspace Ey—; is spanned by (0,1,0)” and (0,0,1)7.
Note that (C — I)? is the zero operator. We have the following for the size of the Jordan blocks.

# of Jordan blocks that are 1 x 1 or larger:
dimKer(C —I) =2
# of Jordan blocks which are 2 x 2 or larger:

dim Ker(C — I)? —dimKer(C — 1) =3 -2=1
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Hence, C' is similar to the matrix

3 V as an F[z]-module

We’ve been studying linear operators of a finite-dimensional vector space V into itself. We constructed the

companion matrix while viewing V' as an F[z]-module. Our setup was as follows:
e [ is an algebraically closed field.
e F[z] is the ring of polynomials in a single indeterminate, with coefficients in F.
e T :V — V is an linear operator of V' that we want to understand.

Theorem 2 (Elementary Divisor Decomposition). Viewing V' as an F[z]-module with respect to the linear
operator T', Vi is the direct sum of a finite number of cyclic modules

Fl2] o Fl o Fle]

€2 €m

Vip =
pit Pyt pm

where the pjj are positive powers of primes in F[z], which are not necessarily distinct.

Since F is algebraically closed, we can assume that each of the p; take the form (z — \;), for some A\; € F.
The product of the p; is the characteristic polynomial. One could then relax the condition that the field F
is algebraically closed to F containing all of the eigenvalues of T

Not every matrix is diagonalizable. The motivation for obtaining the Jordan form is to obtain a matrix,
similar to the one we’re studying, that is as close to diagonal as possible. The linear operator 7" acting on
V is equivalent to z action on the F[z]-module V.

From the elementary divisor form of the decomposition theorem, we need a particularly nice basis for
each of the cyclic powers F[z]/ p;j. For our situation, we are trying to understand F[z]/(z — A\)*. We know

that the standard basis for this vector space is

{1,z,22,...,2""1}.
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Note that we can write z = A+ (z — A). The action of z gives us the following mapping:
(Z-= N1 Az - N

(=N 2= Az - N2+ (2 -0

(Z=N2— AzZ-N)2+(z2-))°
Z=AN)r—AXZ-)\)+(z-)N)?

l— A+ (Z2—-X)

We now have the matrix

Ik =

3

which is an elementary Jordan block of size k with eigenvalue .
Going back to an arbitrary operator T', with characteristic polynomial ¢r(z), we can decompose V' as an

F[z]-module

I

Vr

where cp(2) = (2 — A1) (2 — A2)® - - (2 — A\py,)®. We repeat, for emphasis, that the A; are not necessarily

distinct. We can represent T' as a block matrix of elementary Jordan blocks

Jk17/\1

ks xo

Ji

7n7A7n

This matrix is uniquely determined up to permutation of the Jordan blocks.
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