Shift Operators

Let’s review what we’ve done in the abstract situation. We are studying linear operators T : V — V of
a finite-dimensional vector space V. We defined an F[z]-module structure on V' in the following way:

Let p(z) € F[z] be a polynomial written
p(2) = 2" + an_12"" -+ a1z + ao.

Then
p(T) = apnT" + an 1 T" ' 4+ +a T+ aol

is a linear operator on V. We define the action of F[z] on V by

We denote this F[z]-module by V7.

Since Endp(V) is an n?-dimensional vector space, the set
(I,T,7%,..., 7" 1, 7"}

has n? + 1 elements and must therefore be linearly dependent. Hence, there exists a set of a; € F, not all of
which are zero, such that

an2T”2 + anz_lT”271 4+ 4+ a1T+agl =0

which gives us that T' vanishes on the polynomial
n? n?—1
ap22° +ap2_12 + -+ a1z + ag.

Define J := {p(z) € F[z] | p(T) = 0}. The set J is nonempty, and contains a nonzero polynomial, by our
discussion above. One can show that J is an ideal in F[z], and since F[z] is a PID, there exists a polynomial

of minimal degree that generates J. We call this polynomial the minimal polynomial for 7.

1 The F|z]-module structure on X,

We now wish to use the F[z]-module structure on a vector space to study shift operators. Throughout this

discussion, ¢(z) € F[z] is a monic polynomial of positive degree. The map m, : F[z] — F[z] is the ring
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homomorphism with Kerm, = (¢(z)). By the First Isomorphism Theorem,
Imm, =

We define
Xg=Immy = {mf(2) | f(2) € F[z]}

and

Sq: Xqg — X,

fr—=rmq(2£(2)).
This gives us an action z - f = S, f(z). Notice that for any o € F and f, g € X, that

Sq(f + ag) = mg(2(f + ag))
= my(2f + azg)
= 7q(2f) + mq(azg)
= 7q(2f) + amy(zg)

= Sq(f) + Oqu(g)

and therefore the operator S, is F-linear. Now,

o f=2" )

and one carries on by induction to conclude that z¥ - f = S¥(f). Hence, for any p(z) € F[z],
p(z) - f(2) = p(Sg) f(2) = mq(p(2))

which gives us the F[z]-module structure on X,.
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2 A Matrix Representation for S,

We now proceed to discuss a matrix representation of S, with respect to the standard basis of X,. For
0<i1<n—2,

Sa(2') = my(21) = 241

because i + 1 < degq(z). However,
Sq(zn_l) = mg(2") = —no12" T == a1(2) — qo-

Since Sy is a linear transformation, it is completely determined by its values on a basis, we get

00 00 —qo
10 00 —q
0 1 00 —q
ct=10 o0 00 —g3
00 1 0 —¢g"2
0 0 0 1 —¢g"!

This is the companion matrix for ¢(z), and one can show that ¢(z) is the characteristic polynomial for
Cf. These companion matrices will form the building blocks for our classification of linear transformations

up to similarity.

Lemma 1. Let g(z) € F[z] be a monic polynomial of degree n > 2.The characteristic polynomial of the

companion matriz C¥ is q(z).

Proof. We induct on the degree of the polynomial. If the degree of ¢ is 2, then we can write q(z) = 22+q12+qo.
Then

det(zI — C’f) = 0

-1 z4q¢
=z2(z+q1) + qo

=22+ qz+q

as desired. Now suppose that the statement holds for 2 < k < n — 1. Then
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det(zI — Cf) =

as claimed.

0 0 qo
0 0 q1
0 0 G2
0 0 q3
-1 z qn—2

0 71 Z+qn—1

0 0 q

0 0 q2

0 0 qs
-1 z qn—2

0 -1 Z+ Qn—1

-1
0

0 qo

0 q2

0 q3

z gn—2
-1 =z + dn—1

2+ @z + @2+ 22" P 12" 22" + g0

q(2)
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3 Invariant Subspaces

Having a module structure on X, a natural question to ask is: What are the submodules? Suppose that

M C X, is an F[z]-submodule. Then for any mi,me, and p(z) € F[z], m1 + p(z) - mo € M. That is,
mi +p(z) - ma = mq + p(Sg)ma = ma + me(p(z)ma) € M

which gives us that M is an S;-invariant subspace. On the other hand, if M is an S;-invariant subspace,
then it is also an F[z]-submodule. The details are not difficult to produce. Our next proposition classifies

what the Sy -invariant subspaces look like.
Proposition 1. A subspace M C X, is Sy-invariant if and only if M = q1X,,, for a factorization q(z) =
01(2)g2(2).

roof. ”==" Suppose the nontrivial factorization ¢(z) = ¢1(2)g2(z) and consider M = ¢; X,,. Let f(z) € M,
P "="8S th trivial factorizati d ider M Xg,- Let M

and write f(z) = ¢1(2) f1(z), where deg f1 < deg g2. With respect to g2(z) we have

2f1(2) = a(2)q1(2) + r(2).

Furthermore,

2f(2) = 2f1(2)qa (2)
= (a(2)g2(2) + r(2))q1(2)

= a(2)q1(2)q2(2) + q1(2)r(2)

and we have that

= 1 (2)mg, (2/1(2))

= q1(2)Sy,(f1(2)) € M.

We conclude that M is Sg-invariant.

Now suppose that M is an Sy-invaraint subspace of X,. Then there exists M C F[z] such that M =

7, '(M). Tt is clear that M is closed under addition. Let f € M. Then we can write f(z) = f1(z)+a(2)q(2).

Linear Algebra 5



Shift Operators

So, 2f(2) = 2f1(2) + d(2)q(2) and 7, (2 f) = Sy(f1) € M. We conclude that M is an ideal of F[z]. Let ¢; be

the generator for M. It follows that we can write g(z) = ¢1(2)gz2(2) and

M =my(M) = mq((q1(2))) = @1 X,

O

Now that we know what the invariant subspaces are, we would like to understand how S, behaves when

restricted to an invariant subspace.

Proposition 2. Let ¢(z) = ¢1(2)q2(2) be a nontrivial factorization. Then S, restricted to ¢1X,, is similar

to the shift operator Sy,.

Proof. Let

O X, — Xy

f—af

and observe that this is an isomorphism of the two spaces. For f(z) € Xg,,

(®oSy,) =aq15¢f
= qu7g, (2f)
= mq(2q1f)
_ S,(®o f).

We conclude that the following diagram commutes:

]
Xop — 01 X,

Sq2 Sq|f11Xq2

XQ2 b > quqz

and since ® is an isomorphism the statement follows. O
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3.1 A Digression: Rewriting 7,

Recall that we have the direct sum decomposition

F((z71)) =Flz] & 2" F[z™"]]

and 7y, m_ are the respective canonical projections.

If f(2) € F[z] is a nonzero polynomial, then we can write uniquely

f(z) = a(2)q(z) + r(2)
where degr < degq. Well,
q(2) 7' f(2) = alz) + ()" r(2)

and applying 7_, we have that

7r_q_1f =n_q lr=qtr.

We conclude that

mof =ar-q"'f.
We will use this to prove our next theorem.

Theorem 1. Let p(z) and q(2) be polynomials with q(z) monic and of positive degree. Define

r(z) = ged(p, q)

s(z) = lem(p, q).

We have the factorizations
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with ged(p1, 1) = 11. Further,

s(z) = r(2)p1(2)a1(2) = p(2)q1(2) = q(2)p1(2).

Moreover,

Kerp(S,) = a1 X

Imp(Sq) =rXg

Proof. That p and ¢ can be factored this way and that ged(pi,q1) = 1 is a consequence of the fact that
r(z) = ged(p, ¢) and that F[z] is a PID.
We know that g1 X, and rX,, are S4-invariant subspaces of X, from our previous discussion.

Suppose that f(z) € ¢1X,. Then we can write f(z) = ¢1(2)g(z) with g € X,. We compute

P(Sq)f = Wq(pf)
=qrn_q 'pf
_ -1 -1
=rqmT-r q Tpiq1g
=Trqim-p19

=0

and we conclude that ¢; X, C Ker p(S,).
Conversely, suppose that f(z) € Kerp(S,). Then my(pf) = 0, and there exists g(z) such that p(z)f(z) =
q(2)g(z). This implies that
r(2)p1(2)f(2) = r(2)q1(2)g(2)-

By left cancellation, F[z] is a domain,

p1(2)f(2) = q1(2)9(2)

and since ged(p1,q1) = 1, we can conclude that g1 | f. That is, we can write

f(z) = q1(2) f1(z) for some fi.

1This is notation abuse. To say that two polynomials are coprime, one means that the greatest common divisor is any
nonzero constant polynomial
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Since f € X, and ¢(z) = r(2)q1(2), we have that deg f1 < degr and therefore f; € X,.. Hence, Kerp(S,) C
¢1X,. This gives us the equality Ker p(S;) = ¢1.X,-

Now assume that g(z) € Imp(S,). Then there exists f(z) € X, such that p(S,)f(z) = g(2). In other
words, 74(p(2) f(2)) = g(z). Then

9(z) = mq(p(2) f(2))
=qr_q 'pf
=qrr_r ¢ rpy f

= qrr_q; 'pif

= T7Tq1p1f

which is certainly an element of X, .

Now suppose that g € rX,,. Write g(z) = 7(2)g1(2), for some g; € X,,. By the fact that ged(p1,q1) = 1,
the map f1 — mg,p1f1 acting in Xy, is an invertible map. Hence, there exists f; € X, such that g1 =
g (P1f1). Now,

rgr =rqum_r” gy 'parfi = wapr fi
which implies the desired inclusion. O

Theorem 2. With the same setup of the previous theorem, the linear transformation p(Sy) is invertible if

and only if p(z) and q(z) are coprime. Moreover, we have

where the polynomial a(z) arises out of any solution to the Bezout equation

a(2)p(z) + b(=)g(2) = 1.

Proof. Since p(z) and ¢(z) are coprime, there exist polynomials a(z), b(z) such that

a(2)p(z) + b(=)a(2) = 1.

Then
a(Sq)p(Sq) + b(Sq)a(Sq) =1

Linear Algebra 9



Shift Operators

which reduces to a(S;)p(S,) = I because the characteristic polynomial of S, is ¢(z).
We now embark on proving the biconditional.
Injectivity: Notice that
0 =Kerp(Sq) = a1 X

if and only if X, is the trivial subspace. This readily implies that ged(p, q¢) = r is a constant polynomial.
Surjectivity: If ged(p,¢) = r is a constant polynomial, then X, = X,, from the factorization ¢(z) =
7(2)g1(2). On the other hand, if X, = rX,,, then we can write 2"~ = r(2) f1(2) where f; € X,,. Then

n—1=degr+degfi <degr-+degqg =n—-1

and we conclude that deg f; = degq; and degr = 0. The statement follows. O
We end this section with a small fact regarding invariant subspaces.

Lemma 2. Let q(z) be a monic polynomial of positive degree. If q(z) = q1(z)q2(z) = p1(2)p2(2) are two

factorizations, then ¢1 X4, C p1Xp, if and only if p1 | ¢1 or q2 | pa-

Proof. Suppose p1 | ¢1. Then we can write ¢;(z) = p1(2)s(z), for some polynomial s(z). We have

q(2) = q1(2)q2(2) = p1(2)s(2)g2(2) = p1(2)p2(2)

and in particular ps(z) = $(2)g2(2). This yields

CI1X¢12 :plsqu c pleq2 :plXp2~
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4 Direct Sum Decompositions

Lemma 3. Let q(z) = q1(2)g2(2) be a nontrivial factorization. We have the direct sum decomposition

Xq=Xq © 1 Xy,

Proof. Note that degg; < deggq. This gives us that X, C X,. Every element of X,, has degree strictly less

than ¢; by construction. In a similar vein, every element of ¢; X,, has degree strictly larger than ¢;. This

gives us that X, N¢1X,, = {0}. Now,

dim X, = degq
=degq; +degq

=dim X,, +dim X,

which is the dimension of the direct sum. O
Proposition 3. 1. Suppose that s(z) = lem(p;) and r(z) = ged(q;). Then
sX, = ﬂ DiXg,-
i=1
2. Suppose that u(z) = lem(q;) and v(z) = ged(p;). Then
vX, = Z piXq,-
i=1
Corollary 1. Given a nontrivial factorization q(z) = [] pi(2)q:(2),
i=1
1. The p;(z) are coprime if and only if
Xqg=mXq +p2Xg, +--- + P2 Xq,.
2. The sum in (1) is a direct sum if and only if the ¢; are mutually coprime.
3. We have the direct sum decomposition
Xg=p1Xg, ®p2Xg, @ DpsXg,
11
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—.

qi(2) and p;(z) = H q;(2).
1 J#i

if and only if the q; are mutually coprime and q(z) =

K3

Proof. From the classification of S;-invariant subspaces, we can represent the sum
pqul +p2Xq2 + +stqs =rX;

Applying the previous proposition, statement 2, r(z) = ged(p;) and s(z) = lem(q;). Hence, r X = X, if and
only if 7(z) is a constant polynomial, or equivalently s(z) = ¢(z).

For the second statement, the sum is a direct sum if and only if, for each index i,

piXQz‘ ZPJXQj =0.
J#i

Since ) p; X,, is an invariant subspace, it can be represented as r X, for two polynomials r(z), s(z) such
J#i
that ¢(z) = r(z)s(z). Now, with 7(z) = ged(p;) and lem;jx,(g;) if and only if ged(s,¢;) = 1. That is, the g;
J#
are mutually coprime.

The third statement follows from the fact that the p; are all coprime by construction and the previous

statements. O

Corollary 2. Let p(z) = p1(2)%p2(2) -+ - pip(2)°* be the factorization into irreducibles of the polynomial
p(z). Define s;(z) = [[ pj(2)%,1 <i <k. Then
J#i

Xp = SlXp‘il D Sgngz D---D stpik .

Proof. The ged(s;) = 1 and lem(p;’) = p(z) by construction. Apply the previous corollary to get the

statement. 0
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5 Eigenvalues and Eigenvectors
Proposition 4. Let g(z) be a monic polynomial of positive degree. Then
1. The eigenvalues of S, coincide with the zeros of q(z).

2. The vector f(z) € X, is an eigenvector for S, corresponding to an eigenvalue X if and only if it can be

written

Proof. Let f(z) be an eigenvector of S, corresponding to an eigenvalue A. That is S, f(z) = Af(z). There

exists some scalar ¢ € IF such that

zf —cq = Sy f(2).

Then
2f(2) = cq(z) = Af(2)

and we see that ¢(\) = 0.

Conversely, suppose that A is a zero of ¢(z). Then (z — A) | ¢(z) one sees that

The computation

cq(z)
Sq— A = - A
(Sq )f(2) = mq(2 )z Y
= mqcq(2)
=0
We conclude that f(z) = Czqf(i\) is an eigenvector associated to A. O
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6 Cyclic Transformations and Diagonalization

Definition 1. Let V be an n-dimensional vector space over the field F, and T : V. — V a linear operator.

We say that T is cyclic if there exists v € V' such that the set
{v,Tv, T?v,...,T" v}

is a basis for V. The vector v is said to be a cyclic vector for T.

Lemma 4. Let q(z) € F[z] be a monic polynomial of positive degree, and f(z) € X,. Then
1. Them smallest Sy-invariant subspace of X, containing f(z) is ¢1X,,, where ¢(z) = ¢1(2)g2(2).
2. Sq is a cyclic transformation in X,.
3. A polynomial f(z) € X, is a cyclic vector for S, if and only if f(2) and q(z) are coprime.

Proof. Let M < X, be the subspace spanned by {Sé f 14> 0}. This space is clearly Sg-invariant and contains
f(2). We’ve seen that such a space must have the form ¢; X,,, for a nontrivial factorization ¢(z) = ¢1(2)ga(2).
We conclude that there exists f1 € X, such that f(z) = ¢1(2)f1(2). Hence, ¢; is a divisor of both f and g.
Claim: ¢y = ged(f,q)-
Suppose that ¢o(z) is some common divisor of f(z) and ¢(z). We can then write ¢(z) = qo(2)¢'(2) and

f(2) = qo(2)f(z). Well,
Sr];f = qukf = qukqof/ = C]()7quzkf = QO(Z)SZ;If(Z)

and therefore ¢1X,, C qoX, which implies that go | ¢g1. One concludes that any common divisor divides
¢1(z), from which the claim follows.

For the second statement, we know that 1 € X,. Notice that

SH1 =72 1= 2" for 0 <k < degg(2).

Hence, the set

{1,8,1,871,...,80 "1} ={1,2,2%,...,2""}

is a basis for X,;. We conclude that S, is a cyclic operator.

To prove the third statement, we note that

dim ¢; Xy, = dim X, = degqo.
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Now X, = 1X,, if and only if degqi(z) = 0. That is, f and g are relatively prime. We’ve implicitly used
the setup of the proof of (1) here. O

Proposition 5. Let g(z) be a monic polynomial of positive degree n. Then S, is diagonalizable if and only

if q(z) splits into the product of n distinct linear factors.

—

Proof. ”==" Suppose that ¢(z) splits into n distinct linear factors, q(z) = [] (# — a;). Define

i=1

and recall that the p;, ¢ < ¢ < n, is the spectral basis for X,. Now, we've witnessed that a; is an eigenvalue

of S, and the eigenvector associated to «; is % = ¢p;(z). The computation

(Sq — ;D) (ep;) = Sq(epi) — aiep;
= CSq(pi) — CQyp;

= 0,
which gives us that S;(p;) = a;p;. We’ve now enough to conclude that

851

which is diagonal.

Conversely, suppose that S; is diagonalizable. Then there exists a basis for which
Sy = diag(aq, g, ..., ap).

Because S is cyclic its minimal polynomial and characteristic polynomial coincide. It is then necessary that

all of the o; are distinct. 0
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