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1 Modules

We’ve put a lot of time and effort into understanding vector spaces over the fields R and C. With our
introduction to rings, we wonder if we can have some kind of analog to a vector sapce. We introduce
modules and how they are generalizations of vector spaces. In the following discussion, all rings are assumed
to be commutative with 1g, all actions are left-actions, and all modules are unital.

Definition 1. Let R be a ring and M an abelian group. We say that M is a module over the ring R, when

the following axioms hold:

For every m,n € M and r,s € R,
1. r(m+n)=rm+rn

2. (r+s)ym=rm+sm

3. (r-s)m =r(sm)

4. 1g-m =m.

There are a whole slew of examples. Perhaps the easiest one for us to understand is a vector space over
a field. An F-module, is a vector space and vice-versa.
Example 1. Let A be an abelian group. We claim that A is a Z-module. Let m € Z and a € A. We define

an operation on A by

ZxA—A

m
(m,a) — Za form > 1.
i=1
One deals with m < 0 in the obvious way; —1 - m = —m. Furthermore, Oz - @ = 0. One can show that this
makes A a Z-module. On the other hand, an arbitrary Z-module has an underlying abelian group structure

by definition.
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Example 2. Any ring R is a module over itself by using the usual multiplication in R

RxR—R

(r,s)—r-s

When considering R as an R-module one often writes pR.

Example 3. Let R/I be the quotient ring of R by an ideal I. Then from above we can view R/I as a

module over itself. We can also view R/I as an R-module in the following way:

RxR/T — R/I

(rys+1)— (rs)+1

Clearly the elements in the ideal I annihlate R/I.
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2 Submodules

For a subset N C M, we say that N is a submodule of M, denoted N < M, if N also has a module structure.

Lemma 1. Let R be a ring, M an R-module, and N C M. Then N is a submodule of M if and only if

ny +rne € N for everyr € R and ny,ne € N.

Proof. ?=" If N is a submodule of M, then n; + rny € N because N is also a module.

7<«<" Suppose nj + rng € N for all r € R and nj,ne € N. Then taking r to be the unity IV is closed
under sums. Letting 7 = —1r and n; = ns one sees that the elements of N have additive inverses in N.
We can now see that N has an additive group structure. Taking n; = 0 we also see that IV is closed under

scalar multiplication. O
Lemma 2. Let R be a ring. The submodules of rR are the ideals of R.

Proof. 7<=" If I is an ideal of R, then x +y € I and ry € I for every x,y € I and r € R by definition. Hence
x4+ 1y € I for every x,y € I and r € R, and by the previous lemma I is a submodule.
=" Suppose N is a submodule of gR. Then for n;,ny € N and r € R, n; +rny € N. Hence, N is
closed under addition and rn € N for each » € R and n € N. We conclude that NV is an ideal. O
Since M has an underlying abelian group structure, we have no problem forming the quotient group

M/N. We endow M /N with an operation from R by

Rx M/N — M/N
(rymi+ N)— (r-m)+ N.

One, of course, needs to assure themselves that the operation is well-defined.
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3 Module Homomorphisms

As always, one wants to understand the morphisms between R-modules.

Definition 2. Let R be a ring and M, N two R-modules. We say that ¢ : M — N is an R-module

homomorphism if for all r € R and m,m’ € M
Lop(m +m') = p(m) + p(m’)

2. p(rm) = ro(m)

We saw that I C R was an ideal if and only if I was the kernel of a ring homomorphism. We sketch a
proof of a similar results for modules.

Proposition 1. A subset N C M is a submodule if and only if it is the kernel of some R-module homomor-

phism.

Proof. (Sketch.)

7«<" The kernel of a ring homomorphism is a submodule because for r € R and z,y € Ker g
* p(rz) =rp(z) =0
* vty =p@)+e(y) =0+0=0
"=" When N is a submodule of M, N is the kernel of the natural surjection M — M/N. O

Theorem 1 (First Isomorphism Theorem). Let M and N be two R-modules and ¢ : M — N a surjective
R-module homomorphism. Then

M/Kerp =N
Proof. Define a map

7:M/Kerop — N

m + Ker ¢ — p(m).

Claim: 1. 7 is a well-defined map.

Suppose that m and m’ are representatives of the same equivalence class. Then m —m’ € Ker ¢. Hence

o(m—m') = p(m) — p(m') =0 so ¢(m) = p(m') as desired.
Claim: 2. 7 is an R-module homomorphism
o 7(rm+ Kery) = p(rm) = reo(m) = rr(m + Ker )

o T(m+m' +Kerp)=p(m+m') =p(m)+e(m') =71(m+Kerp)+ 7(m’ + Ker ).
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Claim: 3. 7 is a bijection

Let n € N be arbitrary. There exists m € M such that ¢(m) = n because ¢ is a surjection. Hence
T(m + Ker ¢) = n and 7 is also a surjection. Furthermore, 7(m + Ker ¢) = 0 if and only if ¢(m) = 0 which

implies that m € Ker . O
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4 Exact Sequences and Chain Complexes

We now embark on adding a powerful tool to our arsenal. That of the exact sequence. Let M;, indexed by
i € I, be a collection of R-modules and ; : M; — M;_;, R-module homomorphisms. The sequence

Pit1

M; M;_1

Mi+1

is said to be exact if Im ;1 = Ker ¢;.
A short exact sequence (ses) is an exact sequence of the following form

0— M, — > npp— 2

e Ker f =0 so f is injective
e Ker(M3 — 0) = M3 =Img so g is surjective.

We have a straight-forward example of a short exact sequence from quotient modules:

0 N—>M—"M/N 0

where ¢ is the inclusion map and 7 is the canonical projection.
One can work with sequences that are not exact, and attempt to understand how far they are from being
exact, in some sense.

Definition 3. A (chain) complex E*® of R-modules is a diagram

E’nfl dnfl E’n dn E’n+1 dn+1

such that d**!' od? = 0. That is Imd’ C Ker d*+'.

Example 4. An example of a complex is

4 4

Z/8 Z/8 Z/8 0
One notes that Ker(Z/8 4 Z/8) = {2,4,6,0}. Further, Im(Z/8 N Z/8) = {4,0}. Hence, the sequence
is not exact. However, it does satisfy our condition that Im C Ker.

We mentioned that we can try and measure or determine how far the sequence is from being exact. This
gives rise to the idea of homology.

Definition 4. We define the i** homology by

P Ker d
B = 4

For our example,
 Ker(Z/8 % 7,/8)

H° -
Im(Z/8 = 7./8)

~7/2
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5 Shift Operators

We’ve introduced the following structures at this point:

e [F[z] - the polynomials in a single variable with coefficients in a field F. This is a PID.
e [F[[z]] - the ring of all formal power series in a single variable.

e F(z) - the field of rational functions
F(z) = Fla] ® F_(2)

o F((271)) - the field of truncated Laurent Series. This is the field of fractions of F[[z~1]].
F((z7")) = Flz] & 2 'F[z™"]]
We then have the two natural projections
™4 F(z1)) ——= Fl2

N N
E a2l —— g a2’
—0o0 7=0

and
- F((z71) —= 27 Fl[le ]

N —1
Z ;) —— Z a2’
We now consider an F((z—1))-linear map over the field F((271)). Well,
La:F((z71) — F((z™)

is completely determined by where we send the identity because F((z7!)) is a 1-dimensional F((2~1!) vector
space. Hence

(Laf)(z) = A(2)f(2)

for some A(z) € F((271)).
We are interested in a particular example of a Laurent operator. We define the shift

S:F((z71) — F((z™)
fr—zf

and its inverse

STHF((z7) — F((z)

frezTlf

We have the direct sum decomposition
Flz] © 27 'F[[z71]]
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We consider S|p[,; which we denote ST. This works because F[z] is an S-invariant subspace of F((z7')). We
refer to ST as the forward shift operator. We would then like a backward shift operator. This operator is
defined

S™ 27 W[z — 2 R[]
fr—m_(zf)

We now outline some properties of ST and S~:

1.
2.

The operator ST is injective because F[z] is a domain.
The operator S* is not surjective because the image does not contain the constant polynomials.

1

The operator S~ is not injective because every element of the form az™" is mapped to zero, a € F.

The operator S~ is surjective. Let g(z) = > 77 ajz~7 is some arbitrary element of >~ 'F[[z~"]]. Take
f(z) =352, Biz~" where B;+1 = a;. Then

@) =B+ Bz =B+ iz
i=2 i=1
and

-1
T (2f) =Y ;2 = g(z)

as desired.
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