CLASSIFICATION OF FINITE SIMPLE GROUPS

Let G be a finite group. We say that G is simple if it has no normal subgroups other that G or 1. A
major accomplishment of the 20th century was the classification of finite simple groups. The classification

can be broadly viewed as:

1) Cyclic groups of prime order

(1)
(2) Alternating groups A,, for n > 5.
(3) Finite Simple Groups of Lie Type
(4) The 26 Sporadic Simple Groups
Our interest will be in finite simple groups of Lie type. First, we’ll say a few words about the sporadic
simple groups. (pg. 254 - Aschbacher)
e Monster Group:
(a) Uniqueness was proven by the existence of a 196,883 dimensional faithful representation.
— (Norton - 1985) Never published
— (Griess, Meierfrankenfeld, & Seger - 1989)
(b) Conway & Norton conjectured: There is a graded G-module

V=P Vn

m>—1

with dim V,,, = ¢(m), where

is the unique normalized main modular function.
— (Borchereds - 1992)

e Mathieu Groups

Realized as multiply transitive permuation groups.

— First sporadic groups discovered

M5 introduced in 1861

— Witt in 1938 constructed these as automorphism groups of Steiner systems.
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PSL2(Fq),q > 4 is Simple. We now look at finite groups of Lie type, which will be our interest for the rest

of the talk. We will focus on two examples:

(1) PSLy(F,), where ¢ = p° for some prime p. These groups are simple except PSLy(F2) = S3 and
PSLy(F3) = Aj.
(2) Suzuki groups 2By(¢?).

Remark 1. Each group of Lie type corresponds to a Dynkin diagram and the action from which they are

obtained.
We define the projective linear groups as follows:
PGLy, (F) = GLo (F)/Z(GLy (F))

and

PSL,(F) = SL,(F)/Z(SLq(F))

where Z(GL,,(F) = Z(SL,,(F) = (A1) for A € F*.

Remark 2.

(1) These groups all have a well-defined action on projective space.

(2) The group PGL, (F) is of Lie type and corresponds to the Dynkin diagram A,,_1.
Our goal is to prove that:
Theorem 1. IfF is a finite field with order 4 or larger, then PSLo(F) is simple.
To do this, we will first work through some results for SLa(F).

Definition 1. Let F be any field and G = GLy(F) or G = SLyo(F). Then the standard Borel subgroup B of

G is the group of upper triangular matrices in G. For G = SLy(F),

b
B= |la e F* and b eF
1
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Proposition 1 (Bruhat Decomposition). Let w = and G = SLo(FF). Then there is a decomposi-
-1 0

tion of G into disjoint subsets

G = BU BwB.

Moreover, B is a mazimal subgroup of G.

a b
Proof. Let g € G and write g = . If ¢=0, then g € B. If ¢ # 0, then

c d
b—adec™t a 0 1 1 de? a b—adc! 1 de?
0 —c -1 0 0 1 c 0 0 1
a b
c d
=g € BwB.
Disjoint: We make the observation that
ai b1 0 1 as bg _ * * g_ﬁ B
0 di -1 0 0 do —diay  *

because a1d; = 1, asds = 1, and —djas # 0.
We are left to show that (B, g) = G for ¢ € G\ B. That is, the standard Borel subgroup is maximal in
G. Let g # B so g € BwB. Then there exist b1, by € B such that we can write g = bjwby. Well
(1) we(B,g)
(2) BwB C (B, g)

and therefore G = B BwB C (B, g). We conclude that G = (B, g). O

We now define

1 «

U:= |laeF
0 1

and

_ 1 0

U:= |BeF
g 1

Facts:

(1) U< Bandin fact U < B
(2) U is abelian and isomorphic to (F,+).
(3) One can show that U = wUw ™.
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Proposition 2.
(1) For any finite field F, SLy(F) = (U, U).
(2) LetF be a field, #F > 4, then SLy(F) is perfect. That is, [SL2(F), SLo(F)] = SLo(F).

Lemma 1. Let G = SLo(F). Then
() 9By = Z(G).

geqG

We now prove the theorem:

Proof. Let G = SLy(F,),q > 4. Take N <1 G and invoke the 4th isomorphism theorem. It is enough to show
that N < Z(G) or N =G.
Since the standard Borel subgroup B is maximal in G, either NB =B or NB = G.

(1) N<B= N < gBg~!forall g € G and therefore

N< () 9By =2(G).
geG

Remark 3. All Borel subgroups are conjugate to the standard Borel subgroup.
(2) Suppose that NB = G. Then there exists € N and b € B with w = ab. So,
U = wUw™ " = zbU(xb)~*
=abUb 2!
= Uz !
< NU

but G = (U,U) = NU. Applying the second isomorphism theorem, one sees that

G/N =NU/N =2 ——
/ / UNN

which is abelian. Hence N D G’ = G and therefore N = G.



