
Classification of Finite Simple Groups

Let G be a finite group. We say that G is simple if it has no normal subgroups other that G or 1G. A

major accomplishment of the 20th century was the classification of finite simple groups. The classification

can be broadly viewed as:

(1) Cyclic groups of prime order

(2) Alternating groups An, for n ≥ 5.

(3) Finite Simple Groups of Lie Type

(4) The 26 Sporadic Simple Groups

Our interest will be in finite simple groups of Lie type. First, we’ll say a few words about the sporadic

simple groups. (pg. 254 - Aschbacher)

• Monster Group:

(a) Uniqueness was proven by the existence of a 196,883 dimensional faithful representation.

– (Norton - 1985) Never published

– (Griess, Meierfrankenfeld, & Seger - 1989)

(b) Conway & Norton conjectured: There is a graded G-module

V =
⊕

m≥−1

Vm

with dimVm = c(m), where

j(q) =
∑

m≥−1

c(m)qm

is the unique normalized main modular function.

– (Borchereds - 1992)

• Mathieu Groups

– Realized as multiply transitive permuation groups.

– First sporadic groups discovered

– M12 introduced in 1861

– Witt in 1938 constructed these as automorphism groups of Steiner systems.
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PSL2(Fq),q ≥ 4 is Simple. We now look at finite groups of Lie type, which will be our interest for the rest

of the talk. We will focus on two examples:

(1) PSL2(Fq), where q = pe for some prime p. These groups are simple except PSL2(F2) ∼= S3 and

PSL2(F3) ∼= A4.

(2) Suzuki groups 2B2(q2).

Remark 1. Each group of Lie type corresponds to a Dynkin diagram and the action from which they are

obtained.

We define the projective linear groups as follows:

PGLn(F) = GLn(F)/Z(GLn(F))

and

PSLn(F) = SLn(F)/Z(SLn(F))

where Z(GLn(F) = Z(SLn(F) = 〈λ In〉 for λ ∈ F∗.

Remark 2.

(1) These groups all have a well-defined action on projective space.

(2) The group PGLn(F) is of Lie type and corresponds to the Dynkin diagram An−1.

Our goal is to prove that:

Theorem 1. If F is a finite field with order 4 or larger, then PSL2(F) is simple.

To do this, we will first work through some results for SL2(F).

Definition 1. Let F be any field and G = GL2(F) or G = SL2(F). Then the standard Borel subgroup B of

G is the group of upper triangular matrices in G. For G = SL2(F),

B =


a b

0 a−1

 | a ∈ F∗ and b ∈ F

 .
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Proposition 1 (Bruhat Decomposition). Let w =

 0 1

−1 0

 and G = SL2(F). Then there is a decomposi-

tion of G into disjoint subsets

G = B tBwB.

Moreover, B is a maximal subgroup of G.

Proof. Let g ∈ G and write g =

a b

c d

. If c = 0, then g ∈ B. If c 6= 0, then

b− adc−1 a

0 −c

 0 1

−1 0

1 dc−1

0 1

 =

a b− adc−1

c 0

1 dc−1

0 1


=

a b

c d


= g ∈ BwB.

Disjoint: We make the observation thata1 b1

0 d1

 0 1

−1 0

a2 b2

0 d2

 =

 ∗ ∗

−d1a2 ∗

 /∈ B

because a1d1 = 1, a2d2 = 1, and −d1a2 6= 0.

We are left to show that 〈B, g〉 = G for g ∈ G \ B. That is, the standard Borel subgroup is maximal in

G. Let g 6= B so g ∈ BwB. Then there exist b1, b2 ∈ B such that we can write g = b1wb2. Well

(1) w ∈ 〈B, g〉

(2) BwB ⊆ 〈B, g〉

and therefore G = B tBwB ⊆ 〈B, g〉. We conclude that G = 〈B, g〉. �

We now define

U :=


1 α

0 1

 | α ∈ F


and

U :=


1 0

β 1

 | β ∈ F


Facts:

(1) U ≤ B and in fact U C B

(2) U is abelian and isomorphic to 〈F,+〉.

(3) One can show that U = wUw−1.
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Proposition 2.

(1) For any finite field F, SL2(F) = 〈U,U〉.

(2) Let F be a field, #F ≥ 4, then SL2(F) is perfect. That is, [SL2(F),SL2(F)] = SL2(F).

Lemma 1. Let G = SL2(F). Then ⋂
g∈G

gBg−1 = Z(G).

We now prove the theorem:

Proof. Let G = SL2(Fq), q ≥ 4. Take N C G and invoke the 4th isomorphism theorem. It is enough to show

that N ≤ Z(G) or N = G.

Since the standard Borel subgroup B is maximal in G, either NB = B or NB = G.

(1) N ≤ B ⇒ N < gBg−1 for all g ∈ G and therefore

N ≤
⋂
g∈G

gBg−1 = Z(G).

Remark 3. All Borel subgroups are conjugate to the standard Borel subgroup.

(2) Suppose that NB = G. Then there exists x ∈ N and b ∈ B with w = xb. So,

U = wUw−1 = xbU(xb)−1

= xbUb−1x−1

= xUx−1

≤ NU

but G = 〈U,U〉 = NU . Applying the second isomorphism theorem, one sees that

G/N = NU/N ∼=
U

U ∩N

which is abelian. Hence N ⊃ G′ = G and therefore N = G.
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