
Frobenius Map & Rational Structures

Suppose that k = Fp, p a prime. Given a ≥ 1, there is a unique subfield Fq, q = pe. There is the standard

Frobenius map

Fq : kn → k
n defined by (x1, . . . , xn) 7→ (xq1, . . . , x

q
n).

This map is Fq-linear and a dominant bijective regular morphism.

Let B ⊆ k
n be a closed subset, and assume that V = V(S) for S ⊆ k[x1, . . . , xn]. Then Fq(V ) ⊆ V and

consider the fixed points

V Fq := {v ∈ V | F1(v) = V } = V ∩ Fnq

is a finite subset of V .

Since Fq is a regular morphism, we can consider the algebra homomorphism

F ∗q : k[x1, . . . , xn]→ k[x1, . . . , xn]

which is injective because Fq is bijective. Furthermore, F ∗q (xi) = xqi so ImF ∗q = (k[x1, . . . , xn])q. Given any

f ∈ k[x1, . . . , xn] its coefficients all lie in Fqe ⊆ k and (F ∗q )m(f) = fq
m

.

Frobenius Maps.

Definition 1. Let X be an affine variety over k = Fp and F : X → X a morphism. Assume that there is a

q = pe such that the following hold for the pullback F ∗ : A→ A

(a) F ∗ is injective and F ∗(A) = Aq.

(b) For each f ∈ A there exists some m ≥ 1 such that (F ∗)m(f) = fq
m

.

When such conditions hold, we say that (X,A) admits an Fq-rational structure, and that F is the Frobenius

map for X. Furthermore,

XF := {x ∈ X | F (x) = x}

which are the Fq-rational points in X.

Proposition 1. Assume that X is an affine variety over Fq, with Frobenius map F : X → X. Then there

exists n ≥ 1 and a closed embedding i : X → k
n such that the following diagram commutes:

X

F
��

i // kn

Fq

��
X

i // kn

Moreover, XF is finite and F is bijective.
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Corollary 1. Let X be an affine vairety defined over Fq, with corresponding Frobenius map F : X → X.

Let

A0 := {f ∈ A | F ∗(f) = fq} ⊆ A.

Then for any closed Y ⊆ X, the following are equaivalent

(a) F (Y ) ⊆ Y

(b) F (Y ) = Y

(c) The ideal I(Y ) is generated by elements in A0.

(d) Y = V(S) for some S ⊆ A0.

If these conditions hold, then F |Y : Y → Y is a Frobenius map with respect to Fq.
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Algebraic Groups Defined Over Fq. Let G be an affine algebraic group over k. We say that G is defined

over Fq if there is a Frobenius map F : G→ G with respect to Fq which commutes with:

µ : G×G→ G

(g, h) 7→ gh

and

i : G→ G

g 7→ g−1

That is, F is also a group homomorphism. Consequently,

GF = {g ∈ G | F (g) = g}

is a finite group. Perhaps more correctly, a finite algebraic group.

We now introduce the generalized Frobenius map:

Definition 2. A homomorphism F : G → G of algebraic groups is called a generalized Frobenius map if

some power of F is the Frobenius map for an Fq - rational structure on G.

Theorem 1 (Lang - Steinberg). Assume that G is a connected affine algebraic group over k and F : G→ G

is a generalized Frobenius map. Then

L : G→ G

g 7→ g−1F (g)

is a dominant finite morphism. In particular, L is surjective.
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Frobenius Maps & BN-Pairs. Let G be an algebraic group over k which has a split BN -pair. If

F : G→ G is the Frobenius map on G, we wish to consider BF and NF .

Q: Is BF and NF a split BN -pair for GF ?

Suppose that B,N ≤ G are closed F -stable subgroups which form a reductive BN -pair with Weyl group

W .

Definition 3. Let G be an affine algebraic group of k. Suppose G contains two closed subgroups B and N

which form a split BN -pair. Write B = U ·H where H = B ∩N and U C B. We say that G is a group with

a reductive BN -pair if

(i) The group H is a torus such that CG(H) = H.

(ii) The group U is closed connected and nilpotent.

Q: What does it mean for U to be nilpotent?

A: Define a descending chain of normal subgroupsK0(G) = G,K1(G) = [G,G], . . . ,Ki+1(G) = [G,Ki(G)].

We say that G is nilpotent if Kt(G) = {1G} for some t ∈ N.

Definition 4. (1) The radical of an algebraic group G is the identity component of the maximal normal

solvable subgroup.

(2) The unipotent radical of G is defined to be

Ru(G) :=
⋂

χ∈X(G)

ker(χ)

(characters here are linear characters χ : G→ Gm.)

Now that we understand all of the terminology we take U = Ru(B), note that H = B ∩N is a torus, and

write B = U · H. We wish to show that the Frobenius map satisfies the two properties from the previous

lecture:

(BN ϕ1) U,N, and H are F -stable.

(BN ϕ2) For any n ∈ N , every coset nH such that F (nH) ⊆ nH contains an F -fixed point.

Seeing that the first property holds is a consequence of the fact that we’re assuming that B and N are

F -stable, and U is F -stable because U is closed F (U) ⊆ U implies that F (U) = U .

To see that the second property holds, let n ∈ N and suppose that the coset Hn is F -invariant. Then

there exists t ∈ H such that F (n) = t−1n. Now F |H is a generalized Frobenius map and H connected implies

that we can apply the Lang-Steinberg theorem. Hence, there exists h ∈ H such that t = h−1F (h). So,

F (hn) = F (h)F (n) = htt−1n = hn

and therefore hn is an F -fixed point as required.
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By our discussion in the previous lecture, we now have that BF and NF form a BN -pair for GF .

Finite Classical Groups. Let G ⊆ GLn(k) be one of the following classical groups

GLn(k) any n, any characteristic.

SO2m+1(k) n = 2m+ 1, char(k) 6= 2

Sp2n(k) n = 2m, any characteristic

SO+
2n(k) n = 2m, any characteristic

These groups all have a split BN -pair where

• B = G ∩Bn(k)

• N = G ∩Nn(k)

• U = G ∩ Un(k)

and we can write B = U · T , where T is a torus. This BN -pair is reductive. Now consider the Frobenius

map

F : G→ G

(aij) 7→ (aqij)

and one can show that B,N are F -stable. From the discussion in the other lecture, BF and NF are a split

BN -pair for GF . Hence, the classical finite groups all have a split BN -pair.


