FROBENIUS MAP & RATIONAL STRUCTURES

Suppose that k = Fp, p a prime. Given a > 1, there is a unique subfield F,, ¢ = p°. There is the standard
Frobenius map

F, : k™ — k" defined by (z1,...,2,) — (2f,...,29).

This map is F4-linear and a dominant bijective regular morphism.
Let B C k™ be a closed subset, and assume that V = V(S) for S C k[z1,...,z,]. Then F,(V) CV and
consider the fixed points
Vi:={veV|F@)=V}=VNF;
is a finite subset of V.

Since Fj, is a regular morphism, we can consider the algebra homomorphism

Fyiklzy, .. o0 = Kz, ..o, 20]

which is injective because Fy is bijective. Furthermore, F;(z;) = z{ so ImF = (k[x1,...,2,])?. Given any

m

[ €Kklzy,...,2,] its coefficients all lie in Fye C k and (Fy)™(f) = f .
Frobenius Maps.

Definition 1. Let X be an affine variety over k = Fp and F': X — X a morphism. Assume that there is a

q = p° such that the following hold for the pullback F*: A — A

(a) F™* is injective and F*(A) = A1.

m

(b) For each f € A there exists some m > 1 such that (F™*)™(f) = f7 .

When such conditions hold, we say that (X, A) admits an Fy-rational structure, and that F is the Frobenius
map for X. Furthermore,

X ={zxec X |F(z) =21}

which are the F -rational points in X.

Proposition 1. Assume that X is an affine variety over Fy, with Frobenius map F : X — X. Then there

exists n > 1 and a closed embedding i : X — k™ such that the following diagram commutes:

Moreover, XT' is finite and F is bijective.
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Corollary 1. Let X be an affine vairety defined over Fy, with corresponding Frobenius map F : X — X.
Let

Agi={f € A|F*(f) = f1} C A.
Then for any closed Y C X, the following are equaivalent

(a) F(Y)CY

(b) F(Y) =
(c) The ideal Z(Y) is generated by elements in Ag.
(d) Y

(S) for some S C Ay.

If these conditions hold, then F|y : Y —Y is a Frobenius map with respect to IFy.



Algebraic Groups Defined Over Fy. Let G be an affine algebraic group over k. We say that G is defined

over I, if there is a Frobenius map F': G — G with respect to F;; which commutes with:

P:GxG—G

(g,h) = gh
and

i:G—>G
grrg
That is, F' is also a group homomorphism. Consequently,

G ={geG|F(g9) =g}

is a finite group. Perhaps more correctly, a finite algebraic group.

We now introduce the generalized Frobenius map:

Definition 2. A homomorphism F' : G — G of algebraic groups is called a generalized Frobenius map if

some power of F' is the Frobenius map for an [, - rational structure on G.

Theorem 1 (Lang - Steinberg). Assume that G is a connected affine algebraic group overk and F : G — G

is a generalized Frobenius map. Then

L:G—G

g—g "F(g)

is a dominant finite morphism. In particular, L is surjective.
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Frobenius Maps & BN-Pairs. Let G be an algebraic group over k which has a split BN-pair. If
F : G — G is the Frobenius map on G, we wish to consider B¥ and N¥.

Q: Is Bf and N a split BN-pair for GF'?

Suppose that B, N < G are closed F-stable subgroups which form a reductive BN-pair with Weyl group
w.

Definition 3. Let G be an affine algebraic group of k. Suppose G contains two closed subgroups B and N
which form a split BN-pair. Write B = U - H where H = BN N and U < B. We say that G is a group with
a reductive BN -pair if

(i) The group H is a torus such that Cq(H) = H.

(ii) The group U is closed connected and nilpotent.

Q: What does it mean for U to be nilpotent?
A: Define a descending chain of normal subgroups Ko(G) = G, K1 (G) = [G, G|, ..., K;+1(G) = [G, K;(G)].
We say that G is nilpotent if K¢(G) = {1g} for some t € N.

Definition 4. (1) The radical of an algebraic group G is the identity component of the maximal normal
solvable subgroup.

(2) The unipotent radical of G is defined to be

R.(G) = ker ()
XEX(G)

(characters here are linear characters x : G — Gy,.)

Now that we understand all of the terminology we take U = R, (B), note that H = BN N is a torus, and
write B = U - H. We wish to show that the Frobenius map satisfies the two properties from the previous
lecture:

(BN 1) U,N, and H are F-stable.
(BN ¢2) For any n € N, every coset nH such that F(nH) C nH contains an F-fixed point.

Seeing that the first property holds is a consequence of the fact that we're assuming that B and N are
F-stable, and U is F-stable because U is closed F(U) C U implies that F(U) = U.

To see that the second property holds, let n € N and suppose that the coset Hn is F-invariant. Then
there exists t € H such that F((n) = t~1n. Now F|y is a generalized Frobenius map and H connected implies

that we can apply the Lang-Steinberg theorem. Hence, there exists h € H such that t = h=1F(h). So,
F(hn) = F(h)F(n) = htt"'n = hn

and therefore hn is an F-fixed point as required.



By our discussion in the previous lecture, we now have that B¥ and N¥ form a BN-pair for G¥.

Finite Classical Groups. Let G C GL, (k) be one of the following classical groups

GL, (k) any n,any characteristic.
SO2m+1(k) n =2m+ 1,char(k) # 2

Spa,, (k) n = 2m, any characteristic

SO3,, (k) n = 2m, any characteristic

These groups all have a split BN-pair where
e B=GnNB,k)
e N =GnN,k)
e U=GnNnU,k)
and we can write B = U - T, where T is a torus. This BN-pair is reductive. Now consider the Frobenius

map
F:G—=G
(aij) = (af;)

and one can show that B, N are F-stable. From the discussion in the other lecture, BF and N¥ are a split

BN-pair for GF. Hence, the classical finite groups all have a split BN-pair.



