
Suzuki Groups 2B2(q2)

The Suzuki groups of Lie type are obtained by considering symplectic groups and a generalized Frobenius

map. Our setup is as follows:

• k = F2

• G is the 4-dimensional symplectic group over k

Sp4(k) =
{
A ∈ Mat4×4 | ATJA = J

}
where

J =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


• Define

ϕ : GL4(k)→ GL4(k)

A 7→ J(AT )−1J

Then one sees that the fixed point set (GL4(k))
ϕ

is a subgroup of Sp4(k). That is, ϕ(A) = A and

ϕ(A) = J(AT )−1J so

A = J(AT )−1J

ATJ = JA−1J

ATJ = JA−1

ATJA = J

and therefore A ∈ Sp4(k). In fact, (GL4(k))
ϕ ∼= Sp4(k).
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Define

H := {h(t, u) | t, u ∈ k∗}

where

h(t, u) =


t 0 0 0

0 u 0 0

0 0 u−1 0

0 0 0 t−1


Furthermore, N = H ·W where the Weyl group W is generated by

sα =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 and sβ =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


Considering that the only nonzero entries of sαsβ occur as dot products we obtain the permutation matrix

sαsβ =


0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0


which corresponds to the cycle σ = (1243) which has order 4.
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The elements sα and sβ are involutions and sαsβ has order 4. We divide a square into its chambers

Figure 1. Weyl Chambers

The element w0 is the unique longest word in the Coxeter group W . Furthermore, each of the chambers

above corresponds to an element of the group. We have

• Coxeter system of type B2 where S = {sα, sβ}

• 〈sα, sβ | (sαsβ)4 = s2α = s2β = 1〉

• Z/4 o Z/2 ∼= D8
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We now take a look at some elements of G:

xalpha(t) =


1 t 0 0

0 1 0 0

0 0 1 t

0 0 0 1

 xβ(t) =


1 0 0 0

0 1 t 0

0 0 1 0

0 0 0 1



xα+β(t) =


1 0 t 0

0 1 0 t

0 0 1 0

0 0 0 1

 x2α+β(t) =


1 0 0 t

0 1 0 0

0 0 1 0

0 0 0 1



where t ∈ k. Define x−r(t) = xr(t)
T for r ∈ {α, β, α+ β, 2α+ β} and

Φ := {±α,±β,±(α+ β),±(2α+ β)}

Remark 1. (1) The set Φ is a root systme of type B2 = C2, where α and β are the fundamental roots.

(2) Short roots: ±α, ±(α+ β)

(3) Long roots: ±β, ±(2α+ β)

(4)

Usα = {xα(t) | t ∈ k}

Usβ = {xβ(t) | t ∈ k}

which are used in the sharp form of the Bruhat decompostion.

The subgroup U consists of elements

xα(t1)xβ(t2)xα+β(t3)x2α+β(t4) =


1 t1 t3 + t1t2 t4 + t1t3

1 t2 t3

1 t1

1


where ti ∈ k.
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We wish to use the sharp form of the Bruhat decomposition to generate G. Define

nα(t) := xα(t)x−α(t−1)xα(t)

nβ(t) := xβ(t)x−β(t−1)xβ(t)

for t ∈ k
∗ then sα = nα(1), sβ = nβ(1), and h(t, u) = nα(t)nα(1)nβ(tu)nβ(1). Via the sharp form of the

Bruhat decompostion

G = BnαUsα tBnβUsβ

and in particular

G = 〈xr(t) | r ∈ Φ, t ∈ k〉.

A theorem of Chevalley guarantees the existence of a bijective morphism of algebraic groups θ : G → G

such that θ ◦ F2 = F2 ◦ θ and θ2 = F2, where F2 is the standard Frobenius map which squares each entry in

the matrix.

Let r = 2e, for e ≥ 0, and Fr : G → G the standard Frobenius map. Then θ commutes with Fr and

setting F := θ ◦ Fr, we have that

F 2 = θ2 ◦ F 2
r = F2 ◦ Fr2 = F2r2 = F22e+1

and therefore F is a generalized Frobenius map. The finite group GF is called a Suzuki group and denoted

by 2B2(q2), where q =
√

2r. These groups are simple except for when r = 1.


